A Note on the Smoluchowski-kramers Approximation for the Langevin Equation with Reflection∗

نویسنده

  • KONSTANTINOS SPILIOPOULOS
چکیده

According to the Smoluchowski-Kramers approximation, the solution of the equation μq̈ t = b(q μ t ) − q̇ t + Σ(q t )Ẇt, q 0 = q, q̇ 0 = p converges to the solution of the equation q̇t = b(qt) + Σ(qt)Ẇt, q0 = q as μ → 0. We consider here a similar result for the Langevin process with elastic reflection on the boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASYMPTOTIC PROBLEMS FOR STOCHASTIC PROCESSES WITH REFLECTION AND RELATED PDE ’ s Konstantinos Spiliopoulos , Doctor of Philosophy , 2009

Title of dissertation: ASYMPTOTIC PROBLEMS FOR STOCHASTIC PROCESSES WITH REFLECTION AND RELATED PDE’s Konstantinos Spiliopoulos, Doctor of Philosophy, 2009 Dissertation directed by: Professor Mark I. Freidlin Department of Mathematics Asymptotic problems for stochastic processes with reflection and for related partial differential equations (PDE’s) are considered in this thesis. The stochastic ...

متن کامل

Multiple time-scale approach for a system of Brownian particles in a nonuniform temperature field.

The Smoluchowski equation for a system of Brownian particles in a temperature gradient is derived from the Kramers equation by means of a multiple time-scale method. The interparticle interactions are assumed to be represented by a mean-field description. We present numerical results that compare well with the theoretical prediction together with an extensive discussion on the prescription of t...

متن کامل

Smoluchowski–kramers Approximation and Large Deviations for Infinite-dimensional Nongradient Systems with Applications to the Exit Problem1 by Sandra Cerrai

In this paper, we study the quasi-potential for a general class of damped semilinear stochastic wave equations. We show that as the density of the mass converges to zero, the infimum of the quasi-potential with respect to all possible velocities converges to the quasi-potential of the corresponding stochastic heat equation, that one obtains from the zero mass limit. This shows in particular tha...

متن کامل

The Smoluchowski-Kramers Limit of Stochastic Differential Equations with Arbitrary State-Dependent Friction

We study a class of systems of stochastic differential equations describing diffusive phenomena. The Smoluchowski-Kramers approximation is used to describe their dynamics in the small mass limit. Our systems have arbitrary state-dependent friction and noise coefficients. We identify the limiting equation and, in particular, the additional drift term that appears in the limit is expressed in ter...

متن کامل

The Langevin or Kramers Approach to Biological Modeling

In the Langevin or Ornstein-Uhlenbeck approach to diffusion, stochastic increments are applied to the velocity rather than to the space variable. The density of this process satisfies a linear partial differential equation of the general form of a transport equation which is hyperbolic with respect to the space variable but parabolic with respect to the velocity variable, the Klein-Kramers or s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007